Parametric investigation of load-induced structure remodeling in the proximal femur.
نویسندگان
چکیده
The process of adaptive bone remodeling can be simulated with a self-optimizing finite element method. The basic remodeling rules attempt to obtain a constant value for the strain energy per unit bone mass, by adapting density. The precise solution is dependent on the loads, initial conditions, and the parameters of the remodeling rule. While there are several investigations on developing algorithms leading to the bone density distribution in the proximal femur, these algorithms often require a large number of iterations. The aim of this study was to develop a more efficient adaptive bone remodeling algorithm, and to identify how the bone density distribution of the proximal femur was affected by parameters that govern the remodeling process. The forces at different phases of the gait cycle were applied as boundary conditions. The bone density distributions from these forces were averaged to estimate the density distribution in the proximal femur. The effect of varying the initial bone density, spatial influence function, non-linear order of the adaptive algorithm, and the influence range on the converged solution were investigated. The proposed procedure was shown to converge in a fewer number of iterations and requiring less computational time, while still generating a realistic bone density distribution. It was also shown that varying the identified parameters within reasonable upper and lower bounds had very little impact on the qualitative form of the converged solution. In contrast, the convergence rate was affected to a greater degree by variation of these parameters. In all cases, the solutions obtained are comparable with the actual density in the proximal femur, as measured by Dual-energy X-ray absorptiometry (DEXA) scans.
منابع مشابه
An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کاملLoad distribution in the healthy and osteoporotic human proximal femur during a fall to the side.
Due to remodeling of bone architecture, an optimal structure is created that minimizes bone mass and maximizes strength. In the case of osteoporotic vertebral bodies, however, this process can create over-adaptation, making them vulnerable for non-habitual loads. In a recent study, micro-finite element models of a healthy and an osteoporotic human proximal femur were analyzed for the stance pha...
متن کاملAnalyses of trabecular bone failure
Due to remodeling of bone architecture an optimal structure is created that minimizes bone mass and maximizes strength. In the case of osteoporotic vertebral bodies, however, this process can create over-adaptation, making them vulnerable for nonhabitual loads. In a recent study, micro-finite element models of a healthy and an osteoporotic human proximal femur were analyzed for the stance phase...
متن کاملThe behavior of adaptive bone-remodeling simulation models.
The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to simulate the remodeling process in each element individually is, in fact, an objective function f...
متن کاملEffects of Hip Geometry on Fracture Patterns of Proximal Femur
Background: Some studies have previously shown that geometry of proximal femur can affect the probability of fracture and type of fracture. It happens since the geometry of the proximal femur determines how a force is applied to its different parts. In this study, we have compared proximal femur’s geometric characteristics in femoral neck (FNF), intertrochanteric (ITF) and Subtrochanteric (ST...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
دوره 226 6 شماره
صفحات -
تاریخ انتشار 2012